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ABSTRACT 

We study the effect of quantum fluctuations in a o 4 field theory 

using a Hartree-type approximation. We reduce the operator field equations 

into a set of coupled c-number (infinite in number) equations. We show that 

these equations can also be derived from a variational principle. We carry 

out the renormalization procedure in the one dimensional theory in detail 

and demonstrate how the renormalization can be done in a fashion consistent 

with the Hartree approximation. We then apply the technique to study the 

effective potential and the stability of the vacuum. We find that the abnormal 

vacuum is unstable as the coupling becomes strong, and a transition 

between the abnormal (<$> # 0) and the normal (co> = 0) vacua occurs in 

both the one and the three dimensional theory. A generalization of the 

theory to include internal symmetries is briefly outlined. 
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I. INTRODUCTION 

Recently, several groups have studied the nature of relativistic 

field theories and the possible structure of hadrons using nonperturbative 

methods. 
l-7 

These studies are important in view of the fact that the usual 

perturbation theory failed to supply useful guides in hadron physics. In 

the MIT bag model, 
1 

hadrons are described as fundamental constituents 

(e.g., quarks) trapped inside a cavity, known as a bag. In this model, 

the bag is put in by hand. In the SLAC model, 2 
the hadrons are bound 

states of fundamental fermion fields (quarks) interacting with a scalar 

0 field. The expectation value of o changes in the region of a hadron 

and produces a bag-like (more precisely, a shell-like) solution in the 

strong coupling limit. At the moment, their calculation is mainly classical. 

The effect of quantum fluctuations of both the u-field and the fermion fields 

have not been taken into account in computing the bag solution. It is 

important to know if the basic structure of the solutions is modified, or 

if the <CJ> # 0 ground state in which the bags are formed is stable in the 

strong coupling limit. We shall supply partial answers to these questions. 

In this and the subsequent papers, we investigate the effect of the 

quantum fluctuations in a self-interacting scalar field. We choose to 

study the o 4 
field theory which is the simplest nontrivial self-interacting 

field theory. To study the quantum fluctuations, we make use of a technique 

which is a generalization of the self-consistent Hartree approximation. 
8 
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Aside from the problem of renormalization, the Hartree approximation 

is well-developed in nonrelativistic manybody physics. To test the accuracy 

of the approximation and to introduce the mathematics, we first apply our 

method to an anharmonic oscillator whose numerical solutions are known. 

We find to our surprise that the self-consistent Hartree approximation 

leads to a ground state energy which is within 2” ,O of the exact answer for 

the full range of the coupling constant. This indicates that our approximation 

may have a validity even in the strong coupling limit. 

We then apply the Hartree method to the e4 theory and reduce the 

operator field equations into an infinite set of coupled c-number equations. 

The quantum fluctuations and various wave functions can be determined 

self-consistently. The problem can also be formulated as a variational 

principle. 

In the remainder of this paper, we concentrate on the stability of 

the ground state. Without the quantum fluctuations, the vacuum state can 

be determined trivially by minimizing the classical Hamiltonian. With 

quantum fluctuations, the situation is more complicated. The quantum 

fluctuation leads to a divergent effective potential. Ths divergence must 

be removed by renormalizations. Fortunately, in the field theory of one 

space and one time dimension, the renormalization procedure developed 

by Dashen, Hasslacher, and Neveu’ can be applied to our problem. We 

demonstrate in detail how this can be done in a fashion consistent with the 
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Hartree approximation. A possible generalization of the renormalization 

procedure with the Hartree approximation to three space and one time 

dimension is outlined, but its self-consistency has not been verified. 

Using these renormalization procedures, we are able to study the energy 

density associated with various ground states. We show that, as the 

coupling becomes strong enough, a transition between the abnormal 

(i.e., <o> = c # 0) and the normal (< $> = 0) vacua occurs in both the 

one dimensional and the three dimensional theory. 

In subsequent papers: we will study the effect of quantum fluctuation 

on the one-particle state. We will demonstrate in the one-mode approxi- 

mation that the one-particle state does create a bag-like configuration 

through self-interaction. The size of the bag increases as the coupling 

strength becomes stronger. The translational and Galilean invariance of 

these bag-like solutions will be demonstrated. 

II. A SIMPLE EXAMPLE 

In this paper, we shall apply a generalized Hartree approximation 

to relativistic field theory, To illustrate the method, we apply the 

approximation to a quantum harmonic oscillator which represents the 

simplest o4 type interaction and whose numerical solution is known. 
10 

Following the notation of Bender and Wu, 
10 

the Hamiltonian of an anharmonic 

oscillator can be written as 
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with the usual commutator relation 

r 

I ipax = i . 
(7.. 2) 

The unperturbed part of H in (2.1) describes a particle of mass 

p = i moving in a harmonic well with frequency w 
0 

=l. Heisenberg’s 

equation of motion for this anharmonic system is 
e. 
x+x+2Xx3=0 . (2.3) 

It is the nonlinear nature of the Ax3 term in (2.3) which makes the theory 

nonsolvable analytically. To give an approximate solution to (2.1) or (2.3), 

we approximate the interaction term in (2.1) by 11 

4 2 2 
x +6<x >x - 3<x2>2 , (2.4) 

or equivalently the x3-term in (2. 3) by 

x3 2 -3<x>x . (2.5) 

This is a Hal-tree-type approximation. In (2.4), (2. 5), we have kept the 

lowest order quantum fluctuations in the corresponding terms. Note that 

<x> = 0 for allenergy eigenstates, and that <x2> = <x2> - <x> 2 is 

indeed the quantum fluctuation. Under this approximation, we can reduce 

the anharmonic oscillator into an harmonic oscillator, 

H = p2 + ($ +T<x2>)x2 2 2 +,. 

3h 22 =p2+jw2x2-~<x > 

with frequency 

w2 = 1 i6A<x2> . 

(2.6) 

(2.7) 
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From (2.6), we can in turn compute the expectation value of x2 . Using 

the virial theorem, we have 

2 2 
+wn<x > n = $(n+i)mn , 

or 

<x2> = - 2n+l 
n w n 

(2. 8) 

for the n 
th eigenstate. Now, we impose the self-consistency requirement 

that <x2> introduced in (2.4) (or in (2.5) ) is the same <x2> as n 

obtained in (2. 8). From (2. 7) and (2. 8), we can solve for <x2> and 
n 

0 n self-consistently. In particular, <x2> n 
obeys a cubic equation 

~X<X’>~ + <x2,2 
n 

n - (2n+l)* = 0 . (2.9) 

Once <Y’>~ and w n are known, we can compute the n 
th 

energy eigen- 

value as 

En = (n+$)w 
2 2 

n -$<x >n . (2.10) 

The first t,erm in (2.10) can be interpreted as the n 
th 

energy 

eigenvalue for the induced harmonic oscillator. At first sight, the second 

3x 22 term, - 4 <x > , is puzzling. It appears to imply a negative contribution 

A 4 
from the interaction term HI = -4 x . After a little work we can demonstrate 

that this is not true because wn also contains a A-dependence. In fact, 

the w-term in (2.10) always increases with A fast enough to make the 

total contribution of HI positive. To see it explicitly, we compute the 

w n and En to order O(A) explicitly, 



-7- FERMILAB-Pub-75/23-THY 

w n 
= 1 + 3(2n+l)X + 0(X2) , (2.11) 

and 

En = (t-l+*) +; h(2n+i)2 + O(A2) (2.12a) 

= (n++)w - $ (2n+Q2 + 0(X2) ~ (2.12b) 

Indeed, the additional contribution to E n 
is positive if we express the 

result in terms of the unperturbed frequency w 0 = 1 . It appears to be 

negative only if we express our result in terms of the perturbed frequency 

w . This is a rather trivial point, but it will emerge again in the field 

theory calculation. 

To estimate the accuracy of our approximation, we compare our 

results with the exact numerical calculation carried out by Schwartz and 

Simon. 10 For the ground state energy E. , our result agrees with the 

exact numerical result to within 2% for the full range of A between 

0 and m 0 
12 

In particular, as X+m , our result predicts 

1 1 
3 

EON = $- (6X) = 0.68142 A’ 

while the exact answer is 1 
exact 

= 0.66799 A’ . 

The agreement is even better for smaller X , and our result gives the 

exact answer as X - 0 ~ The agreement is less impressive for the higher 

excited states. However, even in these cases, our method gives the 

correct n and X dependence with a coefficient which is always within 
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20% of the true value. 

In the next section, we shall generalize our method to the field 

theory calculation. Judging from the excellent agreement in the anharmonic 

oscillator calculation, we anticipate that our approximation should give a 

qualitatively correct picture for the ground state as well as for states with 

a small number of particles (iO e. s with small occupation number). 

III. THE MODEL 

The theory that we study in this paper is a self-interacting o4 

model 

(3.1) 

We restrict ourselves to c‘>O, g>O even though our method is applicable 

to c2<0 as well. The Hamiltonian density associated with-$&n (3. 1) is 

. (3.2) 

It is easy to see that, as a classical system, the ground state of (3. 2) is 

located at c$‘=c’ . A system in which the ground state is associated with 

a particular value of 6 , say o=c , is known to have a spontaneously 

broken symmetry. (Here, the broken symmetry is o--o.) We shall refer 

to the quantum mechanical analog of this ground state as an abnormal 

vacuum while the ground state associated with o=O will be referred to 

as the normal vacuum. We shall investigate the effect of quantum 

fluctuations on the stability of this abnormal vacuum. For simplicity, we 
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shall start with a real field o , and ignore temporarily the need for 

renormalization. The introduction of internal symmetries, and 

renormalizations will be discussed later. 

A. Field Equations 

From (3.1). we obtain the field equation 

a2$ + g(~2-c2)~ = 0 , (3.3) 

Unlike the x in an anharmonic oscillator, 4 usually has a nonvanishing 

expectation value. We can separate C$ into a c-number part oc and an 

operator part I$ 
9 

through 

+ = “c + $q (3.4) 

with 

and 

$C 
= <r$> 

<%‘=o - 

(3.5) 

(3.6) 

Obviously, the separation (3.4) is not unique. It depends on the particular 

reference state ( > with which we compute the expectation value. The 

reference state may be a vacuum state, a one-particle state, etc. The 

choice of the reference state is based on the particular problem that we 

are investigating. 

In order to solve (3.3), we make the Hartree type approximation 

I$3 -+ 3<$2>41 - 2<@ 
3 . (3.7) 
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In (3,7), an extra term 2<o> 3 IS subtracted to account for co> #O . In 

terms of dc and 4 q , (3.7) is equivalent to two relations: 

Indeed, (3. 8) and (3. 9) include the lowest order quantum fluctuations 

characterizing the Hartree approximation. A similar approximation can 

be made for Q 
4 

4 
as mentioned in the previous section. 

Under these approximations, we have 

8 $5 + g(3<$2>-c2)$+ - 2g<p3 = 0 . (3. IO) 

Equation (3.10) can ‘be separated into two equations 

aZdc + g($,2-c2)~c + %f< 4q2> $ 
C 

=o , (3.11) 

a24q + g(36c2-c2)4q+ 3s 4 2> 4 =o ~ 
q 9 

(3.12) 

Equation (3.11) is a c-number equation, and (3.12) is linear in the field 

operator o . 
q 

It is now possible to expand o as combinations of creation 
q 

and annihilation operators 

$q =~C+J”‘(X) e 
iwnt 

“n+ + +nn(x) e 
-iwnt 

an’ 
n 

where the c-number wave functions I$($~ ) form a complete set of 

eigenstates, obeying 

-Wn2+n - “2$n f g(3c) 2-c2+3<l$ 2 c q ‘Nn = 0 

(3.13) 

(3.14) 
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with positive eigen energy wn . The creation and annihilation operators 

are time independent, and satisfy the usual commutator relations 

[a,a] = [a+,a+] = 0 , (3.15) 

[an,atnj= bnn. a (3.16) 

The wave functions are normalized by 
:I: 

2w . n I dx $e,, (x) +n(x) = 6n.n (3.17) 

Equations (3. 11) - (3.17) are valid for a given separation 4 = $c+$ . It 
9 

:;: 
is important to note that $,# c$,, $,($, ), and an(ant ) all depend on the 

particular choice of the reference state from which we have made the 

separation. Wave functions associated with different reference states 

are usually not orthogonal to each other. 

The numerical value of the matrix element <c$ 
2 

9 
> , of course, does 

depends on the particular reference state. For a vacuum reference state, 

we have 

oc = < $> = constant , (3. 18) 

an]>=0 , all n , (3.19) 

and 

<Qq2(x)> = c 
n 
q:(x,$Jx, . (3.20) 

We always assume that the operators C$ 
9 

in $,(x)~ are multiplied 

symmetrically. Since we shall compare the energy of states associated 

with different vacua, the concept of normal products is not unique nor 
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useful here. For an arbitrary n-particle reference state with occupation 

number (N N 
1’ 2’ m *. ,), we have 

<4 
2 

1 

i; 
> =2 CNn++Nn 4~ . 

4 n (3.21) 

Given the reference state, Eqs. (3. Ii), (3.14), and (3.21) lead to a set 

of coupled c-number equations. These equations can in principle be 

solved. In practice, however, this is a formidable problem. In the next 

section, we shall formulate our problem in terms of a variational principle. 

It is sometimes possible to find the solution by guessing an appropriate 

trial function. 

For the vacuum reference state, it is convenient to express 

<4 
2 

> as 
q 

Cam’> = lim T< $,(x)4,(x’)> 
x ‘+x 

= lim i GF(x-x’) 
x ‘--x 

(3. 22) 

where G 
F 

is the causal GreenIs function defined by 

a: + g(3C#l 2- c2+3< I$ 2>) = C -6 9 3 GF(x-x’) 4(x-x’) (3. 23) 

and a similar equation on x* ~ Equations (3. 22) and (3. 23) lead to a 

conceptually more transparent, and also a simpler way to determine 

< dq2> self-consistently. 

B. Hamiltonian 

Under the splitting c$=$,+c#z , 
9 

we can decompose the Hamiltonian 

H into three parts according to 
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where 

H=Hc+H +H (3. 24) 
cq 9 

Hc = J C dx $ (&)’ + $ (o$J,)~ + 5 (8,2-c2) ‘1 (3.25a) 

2 2 H = 
cq J C dx ijq +? “c *?S, + g(4, -C )6,4, 

+ g Qq3 
3 

(3. 25b) 

and 

Hq = J C dx $ (rjq)’ + t (%#I,)~ + $ (3$c2-c2)1q2 

4 
++g4 * 

q I 
(3. 25~) 

In the decomposition (3. 24), Hc is the Hamiltonian for the classical field 

d Hcq ‘C ’ is odd in I#I , and H is even in 
9 9 

C#I . 
q 

In order to reproduce 

the coupled equations (3.11) and (3. 12), we approximate Q q3 by Eq. (3.9) 

and 4 
4 

9 
by 

$4” 
- 6~$~z> cj ’ 

9 
- 3< c$q2> 2 (3. 26) 

as in Eq. (2.4). Under these approximations and with the help of (3. Ii), 

(3.12); we have 

J C 
. e 

H = 
c9 

dx $,b, + ‘J(bqV&) 

+ (- v24, + g(l#l 
c 2-c2)61, + Wdq2> 4,)4, 

I 

z J W;b 4 c q - icbq) 9 (3. 27) 

and 

Hq = (ant a,+i)m 
n 

- ; 2 2 

n 
dx g< $q > . (3. 28) 
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The existence of the cross term H 
c9 

is expected by the consistency of 

our quantization scheme. With this H 
cq 

term, we can show in a straight- 

forward fashion that Heisenbergss equations of motion are valid for both 

the original Hamiltonian with variable C$ , and the new Hamiltonian with 

variable $ : 
q 

i[ H, 41 = $ , (3. 29a) 

i[ H, ~$1 = ;d , (3. 29b) 

and 

(3.30a) 

if Hq,b 9’ =yq . (3. 30b) 

H 
cq 

serves as the generator for the canonical transformation c$- C$ 
9 * 

Now, we can compute the energy associated with the reference 

state. It is given by 

E=</H(> 

= + (;bJ2 + $ (o$J2 + f($c2-c2)2 1 
+I (N,‘~)w~-~~I~x</~~/>~ ~ (3.31) 

n 

Note that H 
c9 

does not contribute to the energy E because it is linear 

in the creation and annihilation operators. N, is the occupation number 

associated with a +a n n’ All three terms in (3. 31) have a simple 

interpretation. The first term is obviously the energy due to the classical 

field $ 
C’ 

The second term, 1 (Nn++)wn a represents the quantum 
n 
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energy due to all the normal modes, including the zero point energy. If 

the reference state is a vacuum; then, all N,=O and we have the familiar 

result for the zero point energy + 
1 

on ~ As we have demonstrated for 

the anharmonic oscillator, the last term arises from the nonharmonic 

nature of the mode oscillations, and is a general feature of the $4 type 

interaction system. 

C. Variational Principle 

Even though we have reduced our quantum mechanical problem 

into a set of c-number equations; it is still too complicated to solve these 

equations in general. It is usually much simpler to solve for wn and 

% with a given c 
C’ 

We can then obtain from (3. 14), (3. 21) and (3. 31) 

the quantities wnj +n , and E as functionals of $c . Of course, the 

question remains as to what determines the correct choice of o 
C* 

Here, 

we shall answer this question by finding the correct oc as a solution to 

a variational problem. The following variational principle holds: 

Lemma A time-independent solution 6,(x) for a given reference state 

can be obtained by minimizing the total energy E(as given in (3.31) ) 

associated with this reference state. 

In other words, the requirement 

will reproduce the field equation (3.11) for 9, s When there are more 
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than one solutions, the minimization condition is replaced by the stationary 

condition also specified by (3. 32). The proof of this variational principle 

is straightforward. We leave it as an appendix. 

A time-dependent solution o can be obtained from a time- 
C 

independent solution by a Lorentz transformation. By the superposition 

of these time-dependent states, we can construct solutions having given 

total momentum. The formulation and physical interpretation of these 

states will be discussed in a separate paper. 
9 

IV. GROUND STATE IN ONE SPACE AND 
ONE TIME DIMENSION 

In the classical limit and when c2>0, we know that the ground 

state is given by I$~=c~ . In this section, we shall investigate the effect 

of quantum fluctuation on the stability of the ground state. We shall compute 

the energy difference AE($~) between a state with an arbitrary but constant 

$C 
and “the vacuum” given by oc = c . As we shall see, if we ignore the 

contribution due to the 4: term in our calculation, the energy density 

difference (AE/volume) reduces to the well-known one-loop effective 

potential V($c). i3 With the inclusion of the o 4 
4 

term, our result is 

qualitatively different from and is physically more interesting than the 

one-loop calculation. To get some physical insight without involving too 

much mathematics, we start with the theory in one space and one time 

dimension. 
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A. Renormalization 

We first write down the ground state energy difference between a 

reference state with a given o,(x) and the vacuum state with oc=c as 

AE (unrenormalized)B E(d_) - E(c) 

= jd+(,,’ + &$ +f;“c2-c2)2] 

t 
1 $w,($,) - i g dx 
n I( 2 /+,b#Q j ‘)” 

-lx +wnw +;g 
J( 

dx x 1 Gn(c, / “)’ e (4.1) 
n 

In (4.1), ~~(4,) and LcI,($,) stand for the n th eigen frequency and wave 

function associated with $c . This is the unrenormalized energy 

difference. It is easy to see that AE in (4.1) diverges logarithmically 

as high frequency modes are included. This is the same kind of divergence 

as that first studied by Dashen, et al. 5 m a semiclassical calculation. 

They have demonstrated that this kind of divergence can be removed by a 

mass, or equivalently, a c-renormalization. It turns out that a similar 

renormalization procedure is also valid in our model in spite of the presence 

ofa I$ 
4 

9 
quantum fluctuation term. A sensible energy difference can be 

obtained after the c (or mass) renormalization. 

The renormalized Lagrange function can be written as 

Y= gapl$j2 - $$2-c2)2 - tB$2 (4. 2) 

where +Bb 2 is the mass counter term. The field Eq. (3. 3) is modified to 
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a?#, + g(r#,2-c2) r$ + Bo = 0 . (4. 3) 

After separating o into bc and 4 , 
9 

and under similar approximations 

to those discussed above, we have 

a2gc + g(4 c2-c2) $c t (3g-c $qZ>+B) $c = o (4.4) 

6 q t g(3&c2) bq + (3g< dq2> + BMq= 0 . (4.5) 

The constant B is determined by requiringthat $c=c is a static solution 

(the “abnormal vacuum state”) of (4.4). This leads to 

B = -3g<4 2> 
q 4c=c 

= -3gx I$Jc)l 2 . (4.6) 
n 

For a general $,(d fc , we have 

and 

where 

a2&c + g($c’-c2t3A<oq2>)Qc = 0 , (4. 7) 

24 + 
q 

g(34c2-c2+3A< 4 2>)$ =o 
9 9 

(4.8) 

A<bq2> Z <$J 2> 
q bc 

- <v+ 2> 
4 bc=c 

2 = 1 l~,(~,)l - 1 l*Jc)I 2 . (4.9) 
n n 

The Gn obey 

d2 -wn2(cic) - - 
dx2 

+g 36c C 
2-c2+A< $ 2> 

4 
*, = 0 (4. IO) 

and the renormalized energy difference is 
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AE(renormalized) = Jdx [+ic2 t 5 (2) 2 + f ($c2-c2j2] 

++ 2’( wn($,) -on(c) 
n ) 

+ $ B dx ~$~(x)~-c~+A<(, J C 2 
> 

9 3 

(4.11) 

It is easy to see that for I#I c obeying the boundary condition 4c2-c2 

exponentially as x+*m , the first and the last term in (4.11) are 

convergent. A simple power counting indicates that the middle two terms 

are at most logarithmically divergent. This implies that the sum of the 

middle terms 

Wbc)f $ 1 (~n($cb~nk) 1 + $ B I 
dx(+c 2 2 +A<$, 2 -c 

n 9 
2) (4. i2) 

can be made finite after one more subtraction around $c= c s In Appendix 

B, we demonstrate that the middle term actually obeys both M(c)=0 , and 

bM - 

6 4,” 
0 . Thus, it can be written as a twice-subtracted form 

dJc=c WJJ = M($c) - WC) - J dy 6 Wbc) 
6 ((Y) 

b#Jc2(Y)-C2) > (4.13) 

and hence it is already finite. This implies that AE(ren) is indeed finite. 

In Sec. B, we shall work out a simple example to illustrate both the 

renormalization and the effect of quantum fluctuation. 

B. Potential Well With oc = constant 

We consider a simple o,(x) which describes a potential as given 
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in Fig. 1. We choose cc(x) such as 

4,(x) = a , a constant # c , (4.14a) 

and 

$,W = c /,1.;+q s (4.12b) 

where L>>- 
Js 

represents the width of the well. We assume further 

that $ 
c 

varies smoothly from $c=c to $c=a in the transition regions 

L b -- 
2 

,<ixl<$+$ ) with b being a small but finite length. Under the 

limit of L+m , b finite; we find as expected that the contribution due 

to these transition regions are negligible. 

To evaluate the energy difference, one has to know how to handle 

the sum over states n ~ One can do this be rewriting the summation 

over n as a sum over the discrete bound state contributions plus the 

contribution due to the change of density of states in the continuum, as 

explained by Dashen et al. in Ref. 5. However, for L>> - 

& 

, we can 

greatly simplify the calculation by appealing to the additivity of the density 

of states in the configuration space as we shall explain here. The argument 

goes as follows: For L >C 1 
&T’ 

the summation over states n can be 

written as 

(4.15) 
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The contribution from the transition region is of the order O(i), 

independent of L ; and can be ignored. Also, for 1 X/ >L 2 a we have 

o 
C 

=c and the contribution due to oc and “the vacuum” will cancel each 

other. Thus, we have for any integrand F(4c) 

x (WC)-F(c)) 
n 

F(a) 
-F(c) 1 

.(4.16) 

In (4.16), we have ignored terms of O(f), and used the relation 

c s n, lxl<$ -9 Ldk 
2n (4.17) 

for both $c=a and $c=c . For large L , the contribution is always 

proportional to L . This confirms the assertion that the phase space is 

additive and that the contribution from the transition region is negligible. 

As an independent check of our approximation (4. i5), (4.16); we 

have also computed the sum over states by using the method developed 

in Ref. 5. The direct calculation confirms our result (4.16). 

Using the relation, 
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= lim i GF(x,x* 
c x*-x c 

J 
2 

= lim dk ;ik(x’ -x) i 

x*+x (2T)2 k2-g(3$:-c2+3A< $>)+it 

(4.18) 

we have 

A<bq2> 5 <$I 2> 
q 4c 

- <4 2> 
9 $c=c 

= lim i GF(x,x’) 
x*+x L Idc - iGF-‘)~ 

c 
zc] 

d2k =- J [ i i 

(2~)~ k2-g(3$c2-c2+3A<4q2>)+ic k2-2g 2+ie c 1 
= $1, 2c2 

3$c2-c2+3A<c#, 2> ’ 
q 

(4.19) 

Equation (4. 29) determines A< 4 2> self-consistently. This is analogous 
9 

in spirit to (2. 7), (2.8) which determine <x2> self-consistently in an 

anharmonic oscillator. Note that A< oq2> determined from (4.19) is 

finite even though <o 2 > 
q $c 

is logarithmically divergent. 

For lx/+, we have $c=c , and hence 

A<$q2>=0 , 1x1>+ . (4.20) 

For lx/<; , we have 6 =a , and 
c A < $q2> is a constant specified by 

(4.19). The numerical solutions for A<$q2> as a function of $c2 and 

c2 can be obtained easily. 

Knowing A< ds2>, we can compute the renormalized ground 

state AE as 



-23- FERMILAB-Pub-751 23-THY 

AE(ren) = L: (a2-c2)2 + $ 
C( 

w,(a)-w,(c) 
n 1 

+$ BL(a2-c2+A<$q2>) 

-% 4 UA< $q2> j2 

= L % (a2-c2)2 + + 2 
[ J i w,(a)-w,(c) 1 

+ +B(a2-c2+A<4q2>) - +(A<$,q2>)2 
I 

. (4.21) 

The (divergent) renormalization counter term B is given by 

B = -3g<$q2(c)> 

= -3g lim - e J d2k -ik(x’ -x) i 

x’+x (2nj2 k2-2gc2+ie 1 
21 ’ 

2(k2+2gc )” 

and the energy eigenvalues for $c=a and 4c=c are 

(4.22) 

and 

w .(a) = [ k2+g(3A< ,jq2> +3$ 
c 

2-c2) 
1 

f 

w,(c) = b2+ZgcZ]: 

(4. 23a) 

(4.23b) 

respectively. Substituting (4. 22), (4. 23) into (4. 21) and dividing it by L, 

we obtain the effective potential V(a) as the energy density associated 

with the potential well 4c=a : 

AE( ren) 
V(a) = L 

q 
‘>+3a2-c2) ’ 

I 

(cont. ) 
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- (k2+2gc2)+ - :g(A< $q2>+a2-c2) (k2+2gc2)-i 
1 

- $ (A< oq2>)’ e 

It is now easy to see that (4. 24) is finite. The expression in the curl 

brackets is of the form 

f(A< $q2> +a’) - f(c2) - f ’ (c2) (A< diq2> +a2-c2) (4. 25) 

which represents the removal of the first two divergent terms of f in 

the Taylor expansion. It is important to note that our calculation leads 

automatically to a Taylor expansion around A<$ 
q 

2> ++$c2=c2 rather 

than around $ 2=c2 
c 

Now, we wish to point out the connection of our calculation to the 

usual one-loop calculation of the effective potential. If we ignore the 

effect of quantum fluctuation by setting 

A<$ 2 - 
9 

>= <$ 2> 
I q $c 

- <4 2> +o 
I 9 c 

(no quantum fluctuation) , (4. 26) 

we are led to the one-loop effective potential as 

V i-loop(a) = 7 

A<oq2>-o 

= f (a2-c2)2 ++J-- $$k2+g(3a2-cz)]i 

-(k2+2gc2)* - 2 g(a2-c2) (k2+2gc2) 

-+ 

I 

=f(a2-c2)’ + -& 3(a2-c2) - (3a2-c2) In 
3a2-c2 

I 
. (4. 27) 

2c2 
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When we keep A< oq2> terms in (4.19) and (4. 24). we go beyond the 

one-loop level. In terms of graphs, our calculation includes all the 

cactus-type diagrams as given in Fig. 2, and corresponds to a partial 

sum of n-loop diagrams for all n ~ 14 
Since we obtain our results self- 

consistently, our model contains features which can not be achieved from 

calculations based on a finite order of loops. For instance, V 
1 -looJa) 

in (4.27) is complex for small a . This unphysical result reflects the 

inadequacy of the one-loop calculation. Since loop-wise summation can 

be viewed as a perturbation by orders in h, it is easy to see that 

including contributions up to any finite order will not make the resultant 

amplitude real. Gn the other hand, A< $ 2 
9 

> and V(a) determined in 

(4.19) and (4. 24) in our model are finite and real. 

In the following, we wish to present our numerical solutions for 

A<,$ 2 > 
q 

and V(a) as functions of a and the renormalization point c . 

2 
In Fig. 3a, we plot the numerical solution of A< $ > ~ With A<$, 2> 

9 9 

given, V(a) can be evaluated explicitly from (4. 24) as 

v(a) = f (a2-c2)2 +&g 3(A-12>+a2-c2) 

4c2 

3a2+3A< oq2> -c2 3a2+3A< $ 2 2 
>-c 

In 9 
4c2 2c2 I 

- $ (A<$q2>)2 . (4.28) 

The numerical solution to V(a) is given in Fig. 3b,c. 
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Several features of these solutions are worth mentioning: 

(1) I#I~=O is always a local minimum of V($c); 

(2) oc=c is stationary point of V(mc). 

It is a local minimum for 4rrc2> 3 , and becomes a local maximum for 

41Tc2<3 . At 4nc2=3 , it becomes a point of inflection; 

(3) The minimum at c$~=c represents the true ground state for 

4*c2> 5.1332 , and $c=O is the true ground state for 5.1332>4~~~>3 . 

Since, for 4rrc2<3 , the stationary point at oc=c is a local maximum, 

it does not make any sense to do perturbation around this point. However, 

a new minimum appears at a different location for oc> c ~ In this case, 

we shall compare the new minimum with the minimum at $c=O . The 

position of the new minimum can be determined by the zero of 

avO = g(a2-c2)a + 3gaA<,$ 2> aa 9 - 

The physical meaning of the above results based on the parameter 

c is not immediately transparent. We wish to translate the conclusion 

in terms of the physical coupling constant g and the mass. In two- 

dimensional o4 theory, the coupling constant g has a dimension of 

2 
(mass) . Thus, the intrinsic strength of the coupling should be described 

by g/(mass)2 . Since the effective potential in our model has two distinct 

minima, it provides two natural mass scales. The intrinsic coupling 

strength measured by these two different ground state mass scales are 

usually different. 
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Consider the effective potential around the abnormal ground state 

at $c=c . By expanding the solution around o,=c , we have 

A< $,q22 = - 
W~J~-C) 
8nc2+3 +o( (o,-c)2)> (4.30) 

and 

V($J = gc2 1 - 9 
i i 8rc2+3 

kya2 + o(bp3) * (4.31) 

Introducing a mass parameter around $c=c by 

we have 

V($c) = +rnz($c-c)’ + 0 ($,-cj3 
1 ) 

, 

2 m 9 c 
8nc2+3 

2 8nc2-6 = 2gc - 
8rrc2+3 

The intrinsic strength measured in terms of mc 2 is, 

g z-z-= 8rrc2+3 
c 2 

m c 4c2(41Tc2-3) 

(4. 32) 

(4.33) 

(4.34) 

We find that a large c corresponds to a weak g 
c* As 4rc2 decreases 

and approaches 3, g c increases and approaches infinity. Thus, in terms 

of gc J the ground state associated with the classical solution $c=c 

represents the true ground state in the weak coupling limit. As the 

intrinsic coupling gc becomes stronger, the normal ground state at 

oc=O can have a lower energy and becomes the true ground state. The 

transition occurs at gc = 11.957 . 
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It is interesting also to investigate the physical picture based on 

the intrinsic strength measured by the mass defined around oc=O . Near 

mc=o > we introduce a mass through 

V(dJ = +mo24c2 + 0-s (4.35) 

and obtain, with the help of (4. 29), 

2 - d’V(a) 
m. = 

da2 a=0 
1 

= ,[,,,,q’> lazO - c2] . (4. 36) 

The intrinsic strength measured in m. 2 is 

go-+= 1 
2 

~A<c#, >o-c2 
(4.37) 

mO 9 

which can be evaluated numerically as a function of c . According to 

the numerical calculation, we find that a large c leads to a large go . 

However, as 4rrc2 decreases and approaches 3, go also decreases 

and approaches a limit value 9.045. A further decrease of 4=c2 leads 

to an increasing go . The weak coupling case of go<9. 045 can not be 

obtained for any c . This appears to be a rather surprising result. To 

understand this point, we make a similar calculation of the effective 

potential based on an expansion around $c=O . We find that for 

go< 9.045 , the effective potential has only one minimum located at 

(bc=o . Now, it is obvious why go<9. 045 can never be reached from 
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the expansion around a minimum at $c# 0 . For go> 9.045, a second 

minimum appears and its position is always at $c2?3/4n ~ The second 

minimum becomes the true ground state when go2 10.211 ~ The effective 

potential as a function of go is shown in Fig. 4. 

In terms of go , it is interesting to see that the ground state at 

dc=O is stable only if the coupling is relatively weak (i* e., only if 

gocloe 211). It too becomes unstable if the coupling becomes strong. 

There is of course no contradiction between these two descriptions. It 

follows from the fact that a large gc corresponds to a small go and 

15 
vice versa. It also suggests that a boson ground state will always become 

unstable if the intrinsic coupling associated with this ground state becomes 

too strong. Then, it will jump to an alternative ground state with a weaker 

associated intrinsic coupling strength. 

V. A POSSIBLE GENERALIZATION TO $4 THEORY 
IN THREE SPACE AND ONE TIME DIMENSION 

We now consider the I$~ Lagrange function in three space and one 

time dimension, 

Lz gap+%)2 - 5 (g-2)2 . 

The field equation, the Hamiltonian, and the quantization rules associated 

with this theory are all given in Sec. III. It is well-known that for a o4 

theory in 4 dimensions, we need to make, in addition to the mass 

renormalization, the coupling constant and the wave function renormalizations 
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as well. However, in our approximation developed in the previous 

sections, we include only the cactus-type diagrams in computing the 

effective potential. These diagrams do not lead to any nontrivial wave 

function and coupling constant renormalizations. Hence, further 

modifications are needed in order to arrive at a finite result. 16 
Using 

the one dimensional theory as a guide, we propose the following 

generalization of our model to the three dimensional theory: 

1. We assume that the equations for bc and C$ 
q 

are essentially 

unmodified: (See (4. 7) and (4. 8) ) 

24 c + g(~c2-c2)~c + 3g A<Qq2>bc = 0 8 

a24q + gw,2-c2)$q + 3gA< bq2>0 =o . 
4 

(5.2) 

(5.3) 

Equations (5. 2) and (5. 3) are equivalent to the approximations 

+ counter terms +A< 4 2> 
9 ’ 

(5.4) 

and 

+ counterterms-3A<$q2>$ ~ 
9 

(5. 5) 

2. To obtain a finite A< 4 2> 
9 ’ 

we assume that A<c# 
2 

> 
q 

is given 

by a doubly subtracted expression: 

A< c$~‘Z % < $q2> - < 4q2> 
6 < $q2> 

u=o 6 U(Y) U(Y) 

r u=o 

= lim 
x ‘--x 

- iGF(x,x’) 
u=o 

- i 
dGF(W) 

6 U(Y) I I 
U(Y) 

u=o 
(5.6) 
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where G 
F 

is the GreenIs function associated with (5. 3) and obeys 

a2+.2gc2+u(x) 1 GF(x, x’) = -b4(x-x’) (5. 7) 

with 

U(x) = 3g($c2+A< “q2> -c2) (5.8) 

GF 
also obeys a similar equation for x’ . 

3. The ground state energy difference associated with an arbitrary 

tic (with $c = ‘I) is, 

AE($c) = 
J [ 

dx $ (vQ2 + f (c$~~-c~)~ I 
6w 

++ 

XL 

wn(U)-an(U=O) - U(Y) 
n I 

dy8+) 

u=o 

6 2w n 
6 U(Y)6 U(z) 

U(Y)U(Z) 

u=o ! 

-2r: 4 WA< $q2> j2 . J (5.9) 

Additional subtractions are made in (5.6) and (5. 9) in order to obtain 

finite results. These additional subtractions are put in by hand, and do 

not correspond to simple counter terms in the Lagrange function. For 

this reason, the conclusion arrived at in this section is less reliable than 

the one dimensional result. Note also that the subtractions in (5. 6) and 

(5. 9) are carried out in the Taylorss expansion of the external potential 

U(x) =3g($c2+ *< dq2> x2) , rather than of the classical field 4,(x)-c . 
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Once we accept this subtraction scheme, we can compute the effective 

potential V(a), and consequently, study the stability of the ground state. 

To test the consistency of our subtraction scheme, we compare our result 

with the loop expansion. Just as in the one dimensional theory, if we 

suppress the quantum fluctuation term A<4 2 
4 

> m V(a), we reproduce 

the one loop calculation as given in Ref. 13. This indicates that our 

subtraction scheme is at least consistent with the standard method at the 

one loop level. When the quantum fluctuations are included, the effective 

potential becomes 

V(a) E $ 

r 
Bq2> -c2) 

I 

2 

- (k2+2gc2)$ - subtraction terms 

- $ (A<bq2>)2 

= f (a2-c2)2 _ $i 
2 

(A< $q2> ) 2 + 5 (3a2+3A< 4 
2 

9 
> -c2) 

X In 
3a2+3A< “q2> -c2 

64n 

2c2 
- $ (a2+A< I$~‘> -c2)(9a2+9A< mq2, -5~~) I 

(5.10) 

where the quantum fluctuation term is determined self-consistently by 

i 

k2-2gc2-3g(a2+,< I#I 
2 > -c2)+ie 

q 1 
i 

k2-2gc2+ic 

subtraction term 

I 

(cont. ) 
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= -g (3a2+3A<eq2> -c2) In 
3a2+3A< $q2> -c2 

i6rr2 

+ 3(c2-a’-A<$, 2>) 
q 1 

2c2 

- (5.11) 

we can evaluate V(a), and A< oq2> as functions of g and c2 by 

solving numerically (5.10), (5. 11). The results are plotted in Fig. 5. 

These solutions share many features of the one dimensional solutions. 

In particular, as we increase the coupling strength g , the ground state 

at oc=c becomes unstable and a first order phase transition occurs as 

the coupling constant reaches a critical value given by g = 62.385. 

It is probably worth noting that (5.11) has a self-consistent 

solution only in the region where $c 2 2. =a is smaller than, or of the 

same order as c2 . For $ 
2 

C 
larger than a certain critical value, 

(5.11) no longer possesses a real self-consistent solution , indicating 

that our approximation breaks down in this limit. 
17 

At the moment, we 

do not know whether the subtraction scheme proposed here for the three 

dimensional theory is faithful and self-consistent; nor do we know whether 

it obeys the multiplicative renormalization. We plan to investigate these 

problems in the future. 

VI. INTERNAL SYMMETRY 

In this section, we shall discuss briefly the framework through 

which internal symmetry can be introduced into our model. We take an 

O(n) symmetry as an example. Consider an O(n) invariant Lagrange function, 
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_Lp= 5 ( ap&2 - 5 (TJ2-c2)2 (6.1) 

where a = (c#J’, 02, ** * , 4n) transforms as the fundamental n-dimensional 

representation of the group. The field equation is 

a2$ + g(iJ2-c2)$ = 0 . (6. 2) 

Separating the field operator I#I i into a c-number and an operator part, 

and making the approximation, 

Qqi+qj 
i j 

+<~q~q> 2 

- < bqidqJ> 6 
k 

9 
+<~;gqk$ i 

q 

+ < r$qk$qi> l#l J 
4 

; 

(6.4) 

(6.5) 

we obtain 

a2b i c + gGc2-c2)dc1 <Jq2>bij + 2< r#lqi~qj> 
I 

4 j = 0 
C (6.6) 

and 

a24 i q f g(dJ, - 2 Fj ~J+2o,g+26 ij)$,J 

+ g 
1 

<ij-q2>b1J + 2< 9qibqq $,j = 0 . (6. 7) 

Equations (b. 7) and (6. 8) are direct generalizations of (3.11) and (3.12). 

Since (6.8) is linear in the field operator $ i, we can introduce the 
q 

creation and annihilation operators as before 

Qqi(x) = z (“ni;*)eiWntant + yni(x)emiontan) (6. 8) 
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where the c-number (multi-component) wave function obeys 

with the normalization condition 

2W dxt*0Tm=6nm . 

The analog of the Hamiltonian (3.24) is 

with 

H=Hc+H +H 
cq 4 

Hc = WC) 1 
classical 

H 
cq 

dx(;ci$qi-‘;cl$qi) 

and 

Hq = 1 (anian+i)Wn 
n 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

For the ground state, the vacuum expectation values < $J~~(x)$~~(x)> can 

be determined through 

c $ql(~)~qJ(~)> = lim T< $ql(x$qj(xO)> 
x’+x 

= lim Gij (x,xp) 
x ‘--x F 

where G 
ij 

F obeys 

(6.15) 
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C 
-2 .’ 

+g <b 
9 

> 6 ‘.I + 2-c c+$$~‘> 
II 

GFjk(x, x’) 

= - 6 lJ6 (x-x’) . (6.16) 

Thus, there is no conceptual difficulty in computing < QqloqJ> , the 

ground state energy difference, the effective potential, * D * . However, 

in practice, the introduction of internal symmetry will make the 

calculation far more involved. 

The program of renormalization can be introduced as before. 

Since it is a straightforward generalization of results presented in 

Sec. IV, we shall not reproduce it here. We leave it as an exercise for 

serious readers. 

VII. DISCUSSION 

In this paper, we have studied the effect of quantum fluctuations 

on the stability of the vacuum in a self-interacting boson theory. In both 

the one and the three dimensional theory, the abnormal vacuum state 

becomes unstable as the coupling becomes stronger. A first order 

transition from the abnormal to the normal vacuum occurs as the coupling 

reaches a critical value. One natural extension of the present work is 

to study the stability of the vacuum in the presence of fermions. It is 

known in certain systems with nonzero fermion density that the 

contribution of the fermions to the ground state energy is opposite to 
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that of the bosons. 18 One might expect that the same effect may also appear 

in the vacuum energy, and hence the presence of fermions should tend to 

stabilize the abnormal vacuum. Yan and the author have investigated 

this problem, and found that this is indeed the case. The details of the 

calculation will appear in a separate publication. 

We conclude this paper by listing a few important questions which 

remain to be answered: 

1. Can we develop a systematic method of improving the Hartree 

approximation by including more and more higher order quantum 

fluctuation terms? The method should preserve the variational principle, 

and leads to, in principle, an exact method of evaluating the energies 

and wave functions of various systems. 

2. How do we formulate the multiparticle solutions, and describe 

the scattering phenomena in our framework? Since in our model the 

one-particle state lives in a self-generated bag, a description of the 

multiparticle states should include the interaction among the bags. 

3. To make contact with the real world, we have to include 

fermions, introduce various internal symmetries, and preserve PCAC. 

It is well-known that the inclusion of PCAC imposes a serious challenge 

to the existing bag models. Does our model provide a clue to this 

important question?i9 
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APPENDIX A: VARIATIONAL PRINCIPLE 

In this appendix, we show that Eq. (3.11) can be obtained from a 

variational principle. To establish the connection, it is convenient to 

rewrite the energy (3.31) (See also (3.25)-(3.28) ) as 

c 

CW 
nn E= -+ 

2 +(o$~)~ + $~c~-c’)’ 

‘i cn+n t-w :‘- n2-v2)+n 

+ + g(31$c2-c2) C ‘ni+ni 2+~(~q+n12)2] (A. 1) 
n n 

with 

Equation (A. 1) reduces to (3.31) trivially with the help of (3. 14). Now, 

we have 

Cn = 2Nn + 1 . 

6E bE -= - 
QcW i I 6 4,(x) 

explicit 
+&g&4 

iii 

+ 6E 

IJ - 

6 JI (Y) 

dy 
6E 6 “, (Y) 

n dy Wnn(y) z&J + n II i; 
6 “, (y) 6bc(x) 

(A. 2) 

. (A. 3) 

(A. 4) 

Using (3.14), (3.17) and (3. 21), we see that 

(A.5) 
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and similarly 

Hence, 

explicit 

= -V2bc + !a, 2-c2)bc + 3?2 1 q$J 2”c 
n 

= -v2(hc + g(QcZ-c2,Bc + 3g<$q2>#c * 

Thus, the variational result 

6E 
6 4,(x) = O 

(A. 6) 

(A. 7) 

(A. 8) 

leads precisely to (3.11) as desired. 

The variational principle can be generalized in a straightfo ward 

fashion to include the effects of renormalization. The only important 

modification is to replace the energy E by the renormalized energy. 
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APPENDIX B: RENORMALIZABILITY IN 
ONE SPACE AND Ol?TE TIME DIMENSION 

In Sec. IV, we indicate that the energy density AE($c) (Qc(x)+ c 

exponentially as x - *co ) is finite if 

$,(Y)~-c’ 

(B. 1) 

is finite. We also show that JM is finite after at most two subt?actions. 

In this Appendix, we wish to show that both M(dc2) and 
6MMc 1 

6 $c 
L vanish 

2 2 at $c =c . Thus, M is already twice subtracted, and hence is finite. 

To proceed, we start with Eq. (4.10) 

C 

2 d2 q,j -- 
n 

dx2 
+ 2gc2 + AU($c,x) 1 $n(x) = 0 (B. 2) 

where 

W$c, x) = 3g ($,2(x)-c2) + [, 1 . (B. 3) 

Multiplying(B. 2) by Gn;” and integrated over x , 

-w+ +,, 2 +jx[j;, 2 + (2gc2+i:;q = 0 (B.4) 

or 

w 2: 121 2+(2gc2+AU)j $J ‘) 

n 
~d+hn12 ’ 

(B. 5) 

By differentiation, we find 
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d2+ 
6w 

2 - 2 + (2gc2+AU)$Jy) 
n = dy2 

i;: 
b 4~~ (Y) J ’ dx +n ’ 2 

Idx(&2+(2gC2+AU);+n/2) 

( dxj +,,I 2)2 J 
= [ Idxi “,I ‘1-‘[- ~+(2$+AU)+n(y) 

+ Wn2$$Y) 
1 

=o ; (B. 6) 

and similarly 

bo 
2 

n=o . 
b +n(~) 

By chain differentiations and with the help of (B. 6), (B. 7); we have 

6Gn(y) bun2 
;I; 

+ 
6 +n (Y) 

b b,‘(x) ” 6 qn (y) 

6w 
n ’ 6 AWcn Y) 

+TE 
6 $,2(x) 1 

aAU = 

Then, (B. 5) and (B. 8) imply that 

(B. 7) 

(B. 8) 

bwn 

t$yd2 6 ;” 
WC (x) 

= 

6 4,2(x) 20~ dx Gn 
J ’ ’ 

2 

(cont. ) 
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= dy/~nbd12+- I . 
6 dc (4 

(B. 9) 

Summing (B. 9) over n , and noting that 1 I Gn(4,=c>Y) I 2 1s a constant 
n 

independent of y , we have 

6 w c n 
n 

6 $,‘(x’) 
f+4c2=C2 $6c2=C2 

= z 1 ‘jn@) 1 2 
n 

“, 
6 4c h) s 

dy AU($c,y) 

= 2 h$C) 1 ‘3g ; 
n 6 $c (4 I[ 

dy ,c,y)2-c’2=c2 

+ c l+p,J12- x /$p12 
n n 

I/ $c2=C2 

= - B+- dy 
6 4, bd I[ 

~,(Y)~-c~ + 
ZJ n 

+nL;I($cI Y) 1 2 

- lypl 2 c 

I/ 

. (B. 10) 
n 

$lc2=C2 

Thus, we find both 

M(c2) = (z w,($,) - z “,k) + Bldy[m,(y)‘-c2 

+ 2 I+n($,)I 2 -&“” j?, 2- 2 = 0 a (B.11) 
-c 

c 
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6 WC) n = 

6 4c2 
4c2=C2 

6 +n2 (4 
gc2=c2 

+B am62(x) J+JYi2-c2+~ I+pJc.Y)l 2 
c 

=o ~ (B. 12) 

r6c2=C2 

In other words, we can rewrite M($c2) as the twice subtracted form 

M(bc2) = M(dc2) - M(c2) - (ic2(YbC2) , 

4c=C 

and hence it is finite. 
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FIGURE CAPTIONS 

Fig, 1 The classical field he(x) used in computing the effective 

potential U(a) . 

Fig. 2 A typical cactus diagram included in our calculation. 

Fig. 3 2 Numerical results of the fluctuation function A< $ > and 
9 

Fig. 4 

Fig. 5 

the effective potential V(a) in one space and one time 

dimension. The calculations are based on renormalizarions 

at mc=c . 

a. A<$q2> vs. a2/c2 for 4nc2=0, 1, 3, and 6; 

b. V(a) vs. a/c for 4nc2=3,4. 5, and 6; 

c. V(a) vs. a/c for 4rrc2=i . In this case, a new minimum 

is developed near a/c=2.6. 

Numerical results of the effective potential in one dimensional 

theory at the intrinsic coupling strength gO(=g/m02) = 

0,5.10, and 16 . The calculations are based on expansion 

at oc=O with the mass at oc=O being m . 

Numerical results of the effective potential in three dimensional 

theory with an expansion around oc=c . The effective potential 

becomes complex as a/c is larger than a critical value. 

See Footnote 17 . 
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